

Intervention of sulphur dioxide in the atmospheric degradation of HFC134a

K.P. Sudlow, A.A. Woolf *

Faculty of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK

Received 16 July 1995; accepted 1 May 1996

Abstract

The possible involvement of sulphur dioxide in the tropospheric degradation of 1,1,1,2-tetrafluoroethane (HFC134a) was examined using semi-empirical calculations to assess the exothermicities of reactions. The formation of trifluoromethoxy sulphuric acid, from the trifluoromethoxy radical, in areas of highest sulphur dioxide pollution is indicated. From its energy of deprotonation, it is estimated to be as strong as sulphuric acid and stronger than the other predicted end-product acids (HCOOH, CF₃COOH and HF). Joining a perfluoroalkyl group to sulphur via an oxygen atom enhances stability compared with direct linkage to sulphur. Thus CF₃OSO is more stable than CF₃SO₂ and CF₃OSO(OH) than CF₃SO₂OH. Trifluoromethanol, a degradation intermediary, is about as strong an acid as formic acid and there is a possibility that at least part can be stabilized as a salt NH₄{OCF₃} at high altitudes where solvolysis is minimized.

Keywords: Sulphur dioxide; Atmospheric degradation; HFC134a; Semi-empirical calculations; Reaction exothermicities

1. Introduction

The replacement of ozone-depleting CFCs with HFCs or their ethers has commenced with the commercialization of HFC134a (CF₃CH₂F). This has prompted extensive studies on the possible environmental impact of HFC134a [1] which will depend on how long it survives, its decomposition products and their interactions. The consequences will only become measurable in the next century because of its long life as well as the interfering effects of remaining CFCs. A decomposition mechanism, or rather a sequence of possible reactions, has been proposed. The projected atmospheric concentrations of HFC134a will be in the ppt/v range [2] or of the order 10⁷ molecules cm⁻³ in the units employed by most investigators, which is smaller than the concentrations [X] of many other reactive species in the troposphere.

Bimolecular reactions of the HFC are treated as pseudounimolecular with the average concentrations [X] remaining constant. Estimated 'life times' τ are then defined as $3.15 \times 10^7/k$ [X] years for decay to 37% (1/e)th of the original value. The rate constants k are quoted in cm³ molecule⁻¹ s⁻¹ units which are 6×10^{20} as small as the conventional mol⁻¹ dm³ s⁻¹ units. Because there is a considerable temporal and spatial variation of [X], averaged values are taken. These give averaged lives which are more useful for intercomparisons than for their absolute values. A high reactant concentration can compensate for a small rate constant. HFCs are not directly oxidized by di-oxygen but require the reactive hydroxy radical to abstract hydrogen in a slow rate-determining step. In practice, τ values are obtained by comparing them with that of methyl chloroform (mc) to avoid having to integrate the variable hydroxy concentrations through the atmosphere [3], i.e. τ HFC = τ mc·kmc/kHFC where τ mc = [mc] in atmosphere/production rate of mc. The production rate should include both man-made and natural production [4].

The purpose of this paper is to examine the possible participation of sulphur dioxide in the proposed mechanism which has not been considered previously. Semi-empirical methods are employed to assess the thermodynamic feasibility of reactions whose rate constants will need to be determined by experiment.

2. Calculation methods

Heats of formation and geometries were calculated with semi-empirical AM1 and PM3 parameterizations of MNDO available in the MOPAC program [5]. Charge distributions and spin densities were also obtained to follow charge movement and likely centres for addition to radicals. While errors in semi-empirical heats can be larger than in *ab initio* heats,

^{*} Corresponding author.

Table 1
Comparison of formation heats (in kcal mol⁻¹) obtained semi-empirically with *ab initio* or experimental values

Molecule	AM1	PM3	Ab initio ^a	Experimental	Group additivity
CF ₄	- 225.7	-225.1		- 223.3	
OCF ₂	-146.3	-141.6	-145.3	−152.7 b	-156.7
CF ₃ OH	-227.0	-222.8	-217.7		-213.5
CF ₃ O	-160.1	- 162.4	-150.4		- 156.7
CF ₃ OF	- 172.8	-187.3	-173.0	-182.8	
CF ₃ OO	− 157.0 °	-157.0	-147.8		-161.4
HCOF	-93.0	-88.9	-91.6		
CF ₃ O ₂ CF ₃	-349.9		-342.8, -346.9	-360.2 d	

^a 6.31G*/MP3 or MP4 [8].

derived via isodesmic reactions, the semi-empirical errors tend to compensate in reactions involving differences between related molecules. With small species such as OH, CF₃, NO and SO₂, there are large semi-empirical errors and experimental values are taken. With larger molecules, AM1 and PM3 values are in good agreement and an average can be used. Some semi-empirical heats are compared with recent ab initio and older experimental values in Table 1 to show the extent of the differences. In some instances the semi-empirical heats are closer than ab initio ones to the experimental values.

The reasonableness of some heats can also be roughly checked by equating F and OH 'isoelectronic heats' [6] or by simple group additivity where $\Delta H_f^o(XY)$ is derived as the mean of X_2 and Y_2 heats. As examples of the former, $\Delta H_f^o(CF_3F) \simeq \Delta H_f^o(CF_3OH)$ and $\Delta H_f^o(HCOF) \simeq \Delta H_f^o(HCOOH)$ and of the latter $\Delta H_f^o(CF_3OOH) \simeq \frac{1}{2}[\Delta H_f^o(CF_3OOCF_3) + \Delta H_f^o(HOOH)]$.

3. Sulphur dioxide concentrations and rate implications

Over 200 Mtonne of sulphur dioxide are generated annually, about one-quarter from the marine biosphere and volcanic activity with the remainder man-made. High localized concentrations occur over industrialized areas as evidenced by the averaged higher values of the northern over southern hemispheres. The significant facts that the concentrations of sulphur dioxide can exceed those of the reactive radicals NO, NO₂ and OH involved in HFC decompositions, and that SO₂ has quoted lifetimes ranging from days to weeks, show that the possibility of reaction with radicals derived from HFCs present at much lower concentrations should be considered. Some atmospheric concentrations, together with rate constants of their reactions with trifluoromethoxy radicals, are collected in Table 2.

Bimolecular reactions between radicals should have nearly zero activation energies (E_a) and rate constants (according to classical collision theory) of the order of 1.7×10^{-11} mol-

Table 2 Comparison of concentrations of reactant gases and rate constants for reactions with OCF₃

Gas	Conc. (molecules cm ⁻³) ^a	k_{298} (cm ³ molecules ⁻¹ s ⁻¹)
ОН	6±2×10 ⁵ b	
HO_2	$\sim 10^8$	
NO	10^8 to 2.5×10^{10}	2×10^{11}
NO_2	$7.5 \times 10^7 - 5 \times 10^{10}$	9×10^{-12}
SO_2	$10^9 - 10^{12}$	
CH ₄	3.3×10^{13}	2.1×10^{-14}
H_2O	~ 10 ¹⁷	$0.2-40\times10^{-17}$
O_2	$\sim 10^{18}$	

^a Either global averages or limiting values between polluted and non-polluted areas are given.

ecule⁻¹ cm³ s⁻¹, equal to the pre-exponential factor A in $k=Ae^{-E_a/RT}$. For simple radical-molecule reactions which are exothermic, activation energies up to 6 kcal mol⁻¹ are expected [10], leading to rates of around 10^{-15} if the A factor is unaltered.

Typical examples of rate lowering on replacing a radical by an electron-paired molecule are the reactions of OH with NO and SO_2 for which the k values are 3×10^{-13} and 8.7×10^{-16} , respectively, i.e. a 3000-fold diminution [10]. Changes in activation energies (E_a in kcal mol⁻¹ units) will soon outweigh any variation in the A factor as shown by the expression:

$$pk = 0.73E_a + pA$$

where pk and pA are $-\log k$ and $-\log A$, respectively, and the pA variability is unlikely to exceed a few units. Hence sulphur dioxide in bimolecular reactions with radicals should be competitive with nitrogen oxides (or even methane reactions) when present near its highest concentrations, but it would be uncompetitive with reactions involving oxygen or water molecules present at least at 10^6 -fold higher concentrations.

^b This is an old value [7] and needs to be redetermined using alkaline hydrolysis in a closed system.

c MNDO value.

d A doubtful value [8].

^b A height profile is shown in Ref. [9].

$$\begin{array}{c} CF_{3}CHF \\ \downarrow O_{2} \\ CF_{3}CHFO_{2} \\ \downarrow NO \\ CF_{3}CHFO + NO_{2} \\ \\ HCOF + CF_{3} \\ \downarrow H_{2}O \\ HCOOH + HF \\ CF_{3}O_{2} \\ \downarrow NO \\ CF_{3}O + NO_{2} \\ CH_{4} \\ CF_{3}O + NO_{2} \\ CH_{4} \\ CF_{3}O + CF_{3}OOH + OH \\ \\ OCF_{2} + HF \\ \downarrow H_{2}O \\ CO_{2} + 2HF \\ \end{array}$$

Scheme 1. Main steps in the proposed oxidation of HFC134a.

4. Intervention of sulphur dioxide in the oxidation of HFC134a

The principal reactions proposed after the initial hydrogen abstraction are outlined in Scheme 1 [1]. They lead to three acids as products, one strong (HCOOH), one weak (HF) and one of intermediate strength (CF₃COOH) in aqueous solution. There is a bifurcation in arriving at CF₃CHFO which can either suffer hydrogen abstraction with di-oxygen, or fission to trifluoromethyl and formyl fluoride. Experimental work shows that about two-thirds of the CF₃CHFO molecules will undergo fission although there is a considerable height variation, ranging from 80% fission at ground level to 25% at the top of the troposphere [12]. The most likely intermediates for reaction with sulphur dioxide are the CF3 and CF3O radicals. The CF₃-SO₂ reaction is uncompetitive with the CF₂-O₂ reaction because of the much higher oxygen concentration as pointed out previously. However, the former reaction is of interest in illustrating the ambidentate nature of sulphur dioxide which can link via the S or O atom [13]. The latter is by far the more favourable; the former is endoergic when allowance is made for the entropy decrease.

$$CF_3 + SO_2 \longrightarrow CF_3SO_2 \quad \Delta H = -0.3$$

$$CF_3OSO \quad \Delta H = -48.9$$

(enthalpies in kcal mol⁻¹ not in the text are collected in an appendix).

In CF₃SO₂, the SO₂ precursor acts as a base with an average charge transfer of 0.36e from SO₂ to CF₃, whereas in CF₃OSO the SO₂ is acidic with a charge transfer of 0.12e away from CF₃. Electronegativity values tabulated by Pearson [14] for CF₃ and SO₂ also indicate initial electron transfer to SO₂.

At the next step (oxygen abstraction from CF_2O_2), sulphur dioxide could compete with nitric oxide if SO_2 concentrations were about $1000 \times NO$ concentrations. (Compare the rate ratios of OH with NO and SO_2 [11].)

$$CF_3OO + NO \longrightarrow CF_3O + NO_2$$
 $\Delta H = -17.7$

$$CF_3OO + SO_2 \longrightarrow CF_3O + SO_3$$
 $\Delta H = -27.6$

Free energies would be little different as entropy changes are small (CF₃O is more stable by 5.4 kcal mol⁻¹ than CF₃OO from PM3 values and by 2.6 kcal mol⁻¹ from *ab initio* calculations: a mean stabilization of 4.0 kcal mol⁻¹ is used). The CF₃O radical can then react with methane ($k=2\times 10^{-14}$) and to some extent with nitric oxide [15].

$$CF_3O + CH_4 \longrightarrow CF_3OH + CH_3 \quad \Delta H = -14.6$$

$$CF_3O + NO \longrightarrow ONF + OCF_2$$
 $\Delta H = -32.2$ [16]

$$CF_3O + NO \longrightarrow CF_3 + NO_2$$
 $\Delta H = +21.7$

The second reaction may proceed via a CF₃ONO intermediate which has a weak O-N bond of length 1.59 Å (cf. 1.46 Å in HO-N=O)

$$CF_3O + NO \longrightarrow CF_3ONO \quad \Delta H = -41.4$$

The other suggested reaction with water [15] is just about thermoneutral.

$$CF_3O + H_2O \longrightarrow CF_3OH + OH \quad \Delta H = -0.1$$

Sulphur dioxide should react competitively with nitric oxide towards CF₃O since the reaction is just as exothermic.

$$CF_3O + SO_2 \longrightarrow CF_3OSO_2 \quad \Delta H = -32.5$$

$$CF_3O + SO_2 \longrightarrow CF_3 + SO_3$$
 $\Delta H = +14.4$

There is little information on the kinetics of SO_2 reactions with methoxy radicals and none on reactions with the fluorinated equivalents. The reaction of excess CH_3O_2 with SO_2 under pseudo first-order conditions yielded a k value of 8.2×10^{-15} and reacted at least 10^4 -times more slowly with CH_3O_3 , although the products were not identified [17]. In a later paper the first k value was given as 1.6×10^{-14} , with the presence of NO enhancing this rate [18]. An upper limit for $k(CF_3O-SO_2)$ is probably about 10^{-14} cm³ molecule $^{-1}$ s⁻¹.

5. Properties of CF₃OSO₂

Bond lengths, charge distribution and spin densities calculated with PM3 are shown in Scheme 2. There is a 0.49e transfer from SO₂ to OCF₃ on formation, i.e. SO₂ acts as a base. The odd electron resides mainly on the sulphur, the atom to which other radicals would attach. In CF₃O the odd electron is almost completely on the oxygen. The CF₃OSO₂ radical could then react with OH or NO radicals with nearly zero activation.

$$CF_3OSO_2 + OH - (CF_3O)SO_2OH \Delta H = -86.4$$

$$CF_3OSO_2 + NO \longrightarrow CF_3OSO_2NO \quad \Delta H = -16.3$$

(Reactions of CF₃OSO₂ with water or methane, which yield the sulphuric or sulphinic acids CF₃OSO₂OH or CF₃OSO₂H, are endothermic by 12.5 and 32.9 kcal mol⁻¹, respectively.) Alternatively, the former could be formed via

Scheme 2. Comparison of (a) bond lengths, (b) charge and (c) spin density distribution in CF_3SO_2 , CF_3OSO and CF_3OSO_2 .

$$CF_3O + SO_2OH \longrightarrow CF_3OSO_2OH \quad \Delta H = -76$$

although SO₂OH – the radical involved in SO₂ oxidation – would be present at much lower concentrations than SO₂.

The acid strength of trifluoromethoxy sulphuric acid can be derived from the free energy of deprotonation in the gas phase. (In aqueous solution the strongest acids are levelled to equal strengths, but generally the order of strengths for the weaker acids is preserved.) The relative acidities can be estimated from the difference between the heats of formation of an acid and its anion since the $\Delta H_f^{\,o}(\mathrm{H}^+)$ term is constant

and provided entropy changes are not too variable. Calculated values are collected in Table 3 with some experimental values for comparison.

The strongest sulphuric acids with the easiest deprotonations have enthalpies around 300 kcal mol⁻¹, the weakest acids around 350 kcal mol-1 and intermediate strengths between 320 and 330 kcal mol⁻¹. Replacing CF₃ by CH₃ on average increases deprotonation energies by 21 kcal mol⁻¹. Viggiano et al. [19] measured rates of proton transfer between fluoro, trifluoromethyl and sulphuric acids and anions to obtain the order of acidity various CF₃SO₃H>HSO₃F>H₂SO₄ and correlated this order with the free energies or enthalpies of deprotonation which differed by only 7 kcal mol⁻¹. Kebarle et al. also measured proton transfers mass spectrometrically to compare the acidities of CF₃COOH and CH₃COOH [20], and derived the acidity order from $\Delta H_d^o = D(A-H) - IE(H) - EA(A)$.

More recently Koppel has obtained free energies of ionization of super acids, defined as those with $\Delta G < 300$ kcal mol⁻¹, by ion cyclotron resonance stepped relative to $\Delta G(HBr)$ of 318.1 kcal mol⁻¹ [21]. Errors tend to accumulate with the number of steps. They showed that large basis sets were needed to reproduce experimental values within 3 kcal mol⁻¹ since accurate entropies and zero point energies also required calculation. With smaller basis sets. experimental and calculation free energies can be linearly correlated in spite of large errors in calculated values. Their experimental ΔG values for CF₃SO₃H, HSO₃F and H₂SO₄ of 299.5, 299.8 and 302.2 kcal mol^{-1} , respectively, are in line with the above acidity order. However, CF₃OH $(\Delta G = 340.7 \text{ kcal mol}^{-1})$ appears a much weaker acid than CH₃SO₂OH ($\Delta G = 315$ kcal mol⁻¹) but approaches the strength of formic acid ($\Delta G = 338.4 \text{ kcal mol}^{-1}$) within 1.7 pK_a units.

Table 3
Heats of deprotonation of acids (HA) (kcal mol⁻¹)

НА	$-\Delta H_{\rm f}^{\rm o}({ m HA})^{\rm a}$	$-\Delta H_{\rm f}^{\rm o}({\rm A}^-)$	$\Delta H_{ t d}^{ t b}$	
HOSO ₂ OH	177(4)	241.9(4) e	302(4) 309 [19]	
FSO ₂ OH	182.3(4) °	244.7(4) ^d	303(4) 307 [19]	
CF ₃ SO ₂ OH	259.1(1)	323.6(1)	301(1) 306 [19]	
CH ₃ SO ₂ OH	131.8(1)	166.6(1)	331(1)	
CF ₃ COOH	244(3)	290.5(3)	319(3) 320 [20]	
CH ₃ COOH	103.3(4)	122.5(4)	346(4) 345 [20]	
(CF ₃ O)SO ₂ OH	343.0(1,3)	406.7(1,3)	302(1,3)	
(CH ₃ O)SO ₂ OH	180.3(1,3)	225.6(1,3)	320(1,3)	
(CF ₃ O)SOOH	304.8(1,3)	343.7(1,3)	327(1,3)	
(CH ₃ O)SOOH	91.6(1,3)	103.7(1,3)	353(1,3)	
CF ₃ OH	222.8(3)	256.4(3)	332(3)	
CH ₃ OH	360(4)	48.1(4)	353(4)	

^a (1) AM1; (3) PM3; (1,3) mean of (1) and (3); (2) ab initio; (4) experimental values.

^b ΔH_d = Σ ΔH_f^o (H⁺ + A⁻ → HA) where ΔH_f^o (H⁺) = 365.4 kcal mol⁻¹).

^c Value in Ref. [27] updated with newer $\Delta H_f^{\circ}(HF)$ value.

^d From $\Delta H_1^o(SO_3F)$ and its electron affinity.

e From a lattice energy calculation.

Trifluoroacetic acid, one of the end-products of HFC134a oxidation, is only moderately strong in aqueous solution with quoted K_a values from 0.6-9 mol 1⁻¹ [22]. The discrepant values are due to the difficulty in separating ionization from dissociation as is found with another end-product HF of the HFC134a decomposition. It is a very weak acid in aqueous solution although fully ionized [23]. In contrast, the conjectured product, trifluoromethoxy sulphuric acid, would be as strong as sulphuric acid in aqueous solution. The acidity of CF₃OH has a bearing on its fate in the atmosphere. It is almost as strong an acid as formic acid. The strengthening of acidity, or conversely the weakening of basicity, on replacing methyl by trifluoromethyl groups is well known. For example, N(CF₃)₃ remains unprotonated in hot mineral acids. Hence the increase in acidity of CF₃OH over CH₃OH is expected. Indeed, Kloeter and Seppelt observed salt formation on reaction with trimethylamine [24].

It has been assumed that HF and CO₂ are the sole products of CF₃OH decomposition. In the gas phase CF₃OH slowly decomposes to COF₂ and HF, with reported half-lives varying from minutes to hours [1]. The unimolecular decomposition has been described as orbitally forbidden and indeed an *ab initio* calculation predicts a very high activation energy of 47.9 kcal mol⁻¹ [25]. In the gas phase, proton transfers from acids have rate constants of the order of 10^{-9} cm³ molecule⁻¹ s⁻¹ [19] and hence salt formation with NH₃ is both kinetically and thermodynamically favourable, the endothermic ion formation being compensated by the large lattice energy (U) as the solid forms.

$$CF_3OH + NH_3 \longrightarrow CF_3O^- + NH_4^+$$

$$\Delta H = +130$$
 (gas phase)

The values of $U(NH_4^+OCF_3^-)$ must be > 153 kcal mol⁻¹, the value for the isoelectronic NH_4HSO_4 , since the radius of the OCF_3^- anion must be smaller than that of the hydrogen sulphate anion (S-O=1.53 Å as against C-F=1.37 Å). Alkali metal salts (K-Cs) have been made by reacting COF_2 with metal fluorides in methyl cyanide [26].

$$OCF_2 + F^- \longrightarrow OCF_3^ \Delta H = -49$$
 (in the gas phase)

Although the reaction can be reversed on heating, the stabilities seem to be between those of fluorosulphites (SO_2F^- with $\Delta H = -37$ kcal mol⁻¹) and the isoelectronic fluorosulphate (SO_3F^- with $\Delta H = -78$ kcal mol⁻¹) also made by addition to metal fluorides. However the trifluoromethoxides are unstable in moist atmospheres, presumably because of solvolysis by water protons.

$$OCF_3^- + H^+ \longrightarrow CF_3O^-H^+ \iff$$

$$CF_3OH \longrightarrow COF_2 + HF$$

The equilibrium is displaced to the right as the very volatile COF_2 (b.p. -83 °C) is dispersed. (Both HF and CF_3OH boil at around 20 °C.) Near the top of the troposphere with temperatures as low as -55 °C to -60 °C the salt could persist because of a slow heterogeneous reaction in the solid state

with ice particles, although proton mobility in ice is little different from that in water. Aerosols of ammonium sulphate are known to persist as high altitudes.

A final possible intervention by SO₂ could be by insertion into the C-F bonds of formyl and acetyl fluorides. These reactions, although exothermic by 46 kcal mol⁻¹, are unlikely to occur under atmospheric conditions in preference to the less exothermic and slow hydrolyses to acids [27], if only because of the relative atmospheric concentrations of SO₂ and H₂O.

Conclusions

Rate constants of CF₃O-SO₂, and the subsequent reaction with hydroxy, are required to check if trifluoromethoxy sulphuric acid could form during oxidation of HFC134a. The stability of NH₄⁺OCF₃⁻ as a possible product from hydrogen trifluoromethoxide should also be investigated.

Appendix: Additional auxiliary enthalpies used in deriving heats of reaction (kcal mol^{-1})

Species	$\Delta H_{\rm f}^{\rm o}({\rm gas})^{\rm a}$	Species	$\Delta H_{\rm f}^{\rm o}({\rm gas})$
ОН	9.4(4)	SO₂OH	-102.5(1)
NO	21.6(4)		-104.2(3)
NO ₂	7.9(4)	SO ₂ F	-110.6(1)
SO ₂	-71.0(4)		-102.2(3)
SO ₃	-94.6(4)	HCOF	93.0(1)
F-	-61.0(4)		-88.9(3)
CF ₃	-112.4(4)		91.6(2)
NH_3	-11.0(4)	HCOSO₂F	-134.2(1)
NH ₄ ⁺	149(4)		-139.2(3)
		CF ₃ COF	-237.7(1)
CF ₃ SO ₂	-182.5(1)		-239.3(3)
	-184.9(3)	CF ₃ OOSO ₂ F	-282.4(1)
CF ₃ OSO	-232.6(1)		-286.5(3)
	-231.9(3)	CH ₃ OSO	66.1(1)
CF ₃ OSO ₂	-266.8(1)		-67.7(3)
-	-263.7(3)	CH ₃ OSO ₂	98.9(1)
CF ₃ ONO	-176.8(3)		97.1(3)
CF ₃ OSO ₂ NO	-257.4(1)	CH ₃ O	-1.4(1)
			-0.5(4)
		CH ₃ SO ₂	-50.8(1)
			-52.1(3)

^a (1) AM1; (3) PM3; (4) experimental value.

References

- [1] J. Franklin, Chemosphere, 27 (1993) 1565.
- [2] A. McCulloch, Environ. Monit. Assess., 31 (1994) 167.
- [3] (a) P. Midgley, Ber. Bunsenges. Phys. Chem., 96 (1992) 293. (b)
 A.R. Ravishankara and E.R. Lovejoy, J. Chem. Soc., Faraday Trans.
 1, (1994) 2159.
- [4] G.W. Gribble, Environ. Sci. Technol., 28 (1994) 311A.
- [5] J.J.P. Stewart, J. Comp.-Aided Mol. Des., 4 (1990) 1.

- [6] A.A. Woolf, J. Fluorine Chem., 11 (1978) 307.
- [7] H. von Wartenburg and G. Riteris, Z. Anorg. Allg. Chem., 258 (1949)
- [8] W.J. Schneider and T.J. Wallington, J. Phys. Chem., 97 (1993) 12, 783.
- [9] H.B. Singh and J.F. Kasting, J. Atmos. Chem., 7 (1988) 272.
- [10] S.W. Benson, Thermochemical Kinetics, Wiley, New York, 1976.
- [11] W.A. Payne, L.J. Stief and D.D. Davis, J. Am. Chem. Soc., 95 (1973) 7614.
- [12] T.J. Wallington, M.D. Hurley, J.C. Ball and E.W. Kaiser, Environ. Sci. Technol., 26 (1992) 1318.
- [13] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Co-ordination Compounds, 4th edn., Wiley, New York, 1986, p. 344
- [14] R.G. Pearson, J. Org. Chem., 54 (1989) 1423.
- [15] T.J. Wallington and J.C. Ball, J. Phys. Chem., 99 (1995) 3201; T.J. Wallington, M.D. Hurley, W.F. Schneider, J. Sehested and O. Neilson,

- J. Phys. Chem., 97 (1993) 7606; J. Sehested and T.J. Wallington, Environ. Sci. Technol., 27 (1993) 146.
- [16] J.T. Chen, T. Zhu and H. Niki, J. Phys. Chem., 96 (1992) 6115.
- [17] E. Sanhueza, R. Simonaitis and J. Heicklen, Int. J. Chem. Kinet., 11 (1979) 907.
- [18] C.S. Kan, J.G. Calvert and J.H. Shaw, J. Phys. Chem., 85 (1981) 1126.
- [19] A.A. Viggiano, M.F. Henchman, F. Dale, C.A. Deakyne and J.F. Paulson, J. Am. Chem. Soc., 114 (1992) 4299.
- [20] K. Hiraoko, P. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 95 (1973) 6833.
- [21] I.A. Koppel, J. Am. Chem. Soc., 116 (1994) 3047.
- [22] J.B. Milne, in J.J. Lagowski (ed.), Chemistry of Non-aqueous Solvents, Academic Press, New York, 1978, Chap. 1.
- [23] P.A. Giguère, J. Chem. Educ., 56 (1979) 571.
- [24] G. Kloeter and K. Seppelt, J. Am. Chem. Soc., 101 (1979) 347.
- [25] J.S. Francisco, Chem. Phys., 150 (1991) 19.
- [26] M.E. Redwood and C.J. Willis, Can. J. Chem., 43 (1965) 1893.
- [27] J.S. Francisco, J. Chem. Phys., 96 (1992) 4894.